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Abstract
In this paper we study the influence of anisotropy on the usefulness of the
entanglement in a two-qubit Heisenberg XY chain at thermal equilibrium
in the presence of an external magnetic field, as a resource for quantum
teleportation via the standard teleportation protocol. We show that the nonzero
thermal entanglement produced by adjusting the external magnetic field beyond
some critical strength is a useful resource. We also consider entanglement
teleportation via two two-qubit Heisenberg XY chains.

PACS numbers: 03.67.Mn, 03.67.Hk

1. Introduction

The one-dimensional Heisenberg models have been extensively studied in solid-state physics
(see references in [1]). Interest in these models has been revived recently by several proposals
for realizing quantum computation [2] and information processing [3] using quantum dots
(localized electron spins) as qubits [4]. Lying at the heart of quantum computation and quantum
information [5] is a physical resource—quantum entanglement. Consequently, entanglement
in interacting Heisenberg spin systems at finite temperatures has been investigated by a number
of authors (see, e.g., [6] and references therein).

The state of a typical solid-state system at thermal equilibrium (temperature T ) is
χ = e−βH /Z, where H is the Hamiltonian, Z = tr e−βH is the partition function and
β = 1/kT , where k is the Boltzmann constant. The entanglement associated with the
thermal state χ is referred to as the thermal entanglement [1]. Due to the availability of a
good and computable measure of entanglement for systems of two qubits, the concurrence
(see section 2), thermal entanglement in two-qubit Heisenberg spin chains has been thoroughly
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analysed in terms of thermal concurrence [1, 7–12]. In particular, Kamta et al [10] showed
that the anisotropy and the magnetic field strength may together be used to control the extent
of thermal concurrence in a two-qubit Heisenberg XY chain and, in particular, to produce
entanglement for any finite T, by adjusting the external magnetic field beyond some critical
strength. The recent breakthroughs in the experimental physics of the double quantum dot
(see, e.g., [13]) show that these studies are worthwhile pursuits.

An entangled composite system gives rise to nonlocal correlation between its subsystems
that does not exist classically. This nonlocal property enables the use of local quantum
operations and classical communication to teleport an unknown quantum state via a shared
pair of entangled particles with fidelity (see section 4) better than any classical communication
protocol [14–16]. Quantum teleportation can thus serve as an operational test of the presence
and ‘quality’ of entanglement. On the other hand, two-qubit teleportation together with one-
qubit unitary operations is sufficient to implement the universal gates for quantum computation
[17]. Hence, from both fundamental and practical viewpoints, it is important to study the
thermally mixed entangled state of a Heisenberg spin system via quantum teleportation. The
possibility of using the thermally mixed entangled state of a two-qubit Heisenberg XX chain
as a resource for the standard teleportation protocol P0 [14] was considered in [18]. The local
quantum operations in P0 consist of Bell measurements and Pauli rotations. It was shown
that, although quantum teleportation with fidelity better than any classical communication
protocol is possible, the amount of nonzero thermal entanglement does not guarantee this. We
could have a more entangled thermal state not achieving a better fidelity than a less entangled
one. In fact, the thermally mixed entangled state of a two-qubit Heisenberg XX chain is
‘useless’ whenever an external magnetic field above some critical strength is applied [18].
Entanglement teleportation [19] using the thermally mixed entangled states of two two-qubit
Heisenberg XX chains as resources was also studied in [20].

In view of the above results, we study in this paper the influence of anisotropy on the
usefulness, of the entanglement in a two-qubit Heisenberg XY chain at thermal equilibrium
in the presence of an external magnetic field, as a resource for quantum teleportation via the
standard teleportation protocolP0. This paper is organized as follows. In section 2, we give the
Hamiltonian for the anisotropic two-qubit Heisenberg XY chain, and briefly review a measure
of entanglement, the concurrence. We briefly discuss the relevant results of [10] in section 3.
This sets the stage necessary for the presentation of our results in section 4. In section 5, we
present our results on entanglement teleportation using the thermally mixed entangled states
of two two-qubit Heisenberg XY chains as resources. We conclude in section 6.

2. Two-qubit Heisenberg XY chain

The Hamiltonian H for the anisotropic two-qubit Heisenberg XY chain in an external magnetic
field Bm ≡ ηJ (η is a real number) along the z-axis is

H = 1
2 (1 + γ )Jσ 1

A ⊗ σ 1
B + 1

2 (1 − γ )Jσ 2
A ⊗ σ 2

B + 1
2Bm

(
σ 3

A ⊗ σ 0
B + σ 0

A ⊗ σ 3
B

)
, (1)

where σ 0
α is the identity matrix and σ i

α (i = 1, 2, 3) are the Pauli matrices at site α = A,B.
The parameter −1 � γ � 1 measures the anisotropy of the system and equals 0 for the
isotropic XX model [7] and ±1 for the Ising model [9]. (1 + γ )J and (1 − γ )J are real
coupling constants for the spin interaction. The chain is said to be antiferromagnetic for
J > 0 and ferromagnetic for J < 0.

The eigenvalues and eigenvectors of H are given by [10]

H |�0〉AB = B|�0〉AB, H |�1〉AB = J |�1〉AB,

H |�2〉AB = −J |�2〉AB, H |�3〉AB = −B|�3〉AB,
(2)
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where B ≡ √
B2

m + γ 2J 2 =
√

η2 + γ 2J ,

|�0〉AB = 1√
(B + Bm)2 + γ 2J 2

[(B + Bm)|00〉AB + γ J |11〉AB], (3)

|�1〉AB = 1√
2

[|01〉AB + |10〉AB], (4)

|�2〉AB = 1√
2

[|01〉AB − |10〉AB], (5)

|�3〉AB = 1√
(B − Bm)2 + γ 2J 2

[(B − Bm)|00〉AB − γ J |11〉AB]. (6)

When Bm = 0, equations (3) and (6) reduce to 1√
2
[|00〉AB + |11〉AB] and 1√

2
[|00〉AB −

|11〉AB] respectively, so that the eigenvectors are the four maximally entangled Bell states:∣∣�0
Bell

〉
AB

,
∣∣�1

Bell

〉
AB

,
∣∣�2

Bell

〉
AB

and
∣∣�3

Bell

〉
AB

. For γ = 0, |�0〉AB = |00〉AB and |�3〉AB =
|11〉AB with eigenvalues Bm and −Bm respectively, while |�1〉AB and |�2〉AB remain
unchanged [7, 18].

To quantify the amount of entanglement associated with a given two-qubit state ρAB ,
we consider the concurrence [21, 22] C[ρAB] ≡ max{λ1 − λ2 − λ3 − λ4, 0}, where
λk(k = 1, 2, 3, 4) are the square roots of the eigenvalues in decreasing order of magnitude of
the spin-flipped density-matrix operator RAB = ρAB

(
σ 2

A ⊗ σ 2
B

)
ρ∗

AB

(
σ 2

A ⊗ σ 2
B

)
, the asterisk

indicates the complex conjugation. The concurrence associated with the eigenvectors,
equations (3) and (6), are given by γ√

η2+γ 2
. Hence, they represent entangled states when

γ �= 0. We note that in the limit of large η,

C[|�0〉AB〈�0|] = C[|�3〉AB〈�3|] ≈ γ η−1, (7)

going to zero asymptotically when η is infinitely large.

3. Thermal state and concurrence

For the above system in thermal equilibrium at temperature T, its state is described by the
density operator

χAB = 1

Z
[e−βB|�0〉AB〈�0| + e−βJ |�1〉AB〈�1| + eβJ |�2〉AB〈�2| + eβB|�3〉AB〈�3|], (8)

where the partition function Z = 2 cosh βB+ 2 cosh βJ , the Boltzmann’s constant k ≡ 1 from
hereon, and β = 1/T . After some straightforward algebra, we obtain

λ1 = 1

Z
eβJ , (9)

λ2 = 1

Z
e−βJ , (10)

λ3 = 1

Z

√
1 +

2γ 2J 2

B2
sinh2 βB +

2γ J

B

√
1 +

γ 2J 2

B2
sinh2 βB sinh βB, (11)

λ4 = 1

Z

√
1 +

2γ 2J 2

B2
sinh2 βB − 2γ J

B

√
1 +

γ 2J 2

B2
sinh2 βB sinh βB. (12)
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The concurrence derived from equations (9)–(12) is invariant under the substitutions η −→
−η, γ −→ −γ and J −→ −J . We shall see that the same applies to the fully entangled
fraction (see section 4). Therefore, we restrict our considerations to η � 0, 0 � γ � 1 and
J > 0.

For γ = 0, equations (9)–(12) yield the thermal concurrence obtained in [7]:

C[χAB] = max

{
sinh βJ − 1

cosh βBm + cosh βJ
, 0

}
. (13)

Equation (13) reduces, when T = 0, to

C[χAB] =




1 for η < 1,
1
2 for η = 1,

0 for η > 1.

(14)

Hence, with increasing η, the concurrence is constant and maximal, but it drops suddenly to
zero as η crosses the critical value ηcritical = 1, marking the point of quantum phase transition
(phase transition taking place at zero temperature due to variation of interaction terms in the
Hamiltonian of a system [1]). For nonzero T and, η < 1 or η = 1, C[χAB] decreases from 1
or 1

2 respectively to 0 as T increases from 0 to the critical temperature T
(1)

critical ≈ 1.134 59J .
Physically, this is due to mixing of unentangled states and entangled ones. Similarly, when
η > 1, due to mixing of entangled states with the original product state |11〉AB, C[χAB]
increases from 0 to some maximum before decreasing to 0 again at the same T

(1)
critical. The

critical temperature T
(1)

critical, beyond which C[χAB] = 0, is independent of Bm. It also follows
from equation (13) that C[χAB] decreases monotonically with increasing Bm for any finite T
and vanishes exponentially with increasing Bm, due to an increase in the proportion of |11〉AB .

For some nonzero γ , equation (8) reduces to the following three possibilities in the
zero-temperature limit, i.e., β −→ ∞, at which the system is in its ground state.

(a) 0 � η <
√

1 − γ 2:

χAB = 1

Z
[eβJ |�2〉AB〈�2| + eβB|�3〉AB〈�3|]

−→ |�2〉AB〈�2|, (15)

with Z = eβJ + eβB. Equations (9)–(12) give C[χAB] = 1, its maximum value, in
agreement with the fact that |�2〉AB is a maximally entangled Bell state.

(b) η =
√

1 − γ 2:

χAB −→ 1
2 [|�2〉AB〈�2| + |�3〉AB〈�3|]. (16)

From equations (9)–(12), the above equally weighted mixture has

C[χAB] = 1
2 (1 − γ ). (17)

(c) η >
√

1 − γ 2:

χAB −→ |�3〉AB〈�3|, (18)

and equations (9)–(12) yield accordingly

C[χAB] = γ√
η2 + γ 2

. (19)

Therefore, for a given γ, ηcritical =
√

1 − γ 2 marks the point of quantum phase transition.
However, in contrast to the isotropic case (γ = 0) [7], this is not a transition from an entangled
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phase to an unentangled phase. For values of γ other than γ = 1
3 , there is a sudden increase

or decrease in C[χAB] at ηcritical, depending on whether γ > 1
3 or γ < 1

3 , before decreasing to
zero asymptotically, as η is increased beyond the critical value ηcritical [10].

For nonzero temperatures, due to mixing, C[χAB] decreases to zero as the temperature T
is increased beyond the critical value T

(1)
critical, as in the isotropic case. However, in contrast, for

each nonzero value of γ, T
(1)

critical depends on η. It decreases with η when η is increased from
0 to ηcritical =

√
1 − γ 2, but increases with η for η > ηcritical. In fact, the anisotropy permits

one to obtain entangled qubits at higher T and higher Bm than is possible in the isotropic case
[10]. An interesting question therefore is whether this entanglement is ‘useful’ as a resource
for teleportation. This is the subject of our next two sections.

4. Teleportation and fully entangled fraction

Standard teleportation P0 [14] with an arbitrary entangled mixed state resource ρAB is
equivalent to a generalized depolarizing channel �

ρAB,P0
B , with probabilities given by the

maximally entangled components of the resource [23, 24]. Therefore, for the thermally mixed
entangled state χAB , equation (8), we have

�
χAB,P0(m)

B (|ψ〉B〈ψ |) =
3∑

i=0

AB

〈
�i

Bell

∣∣χAB

∣∣�i
Bell

〉
AB

× σ i⊕m
B |ψ〉B〈ψ |σ i⊕m

B , (20)

where |ψ〉B = cos ϑ
2 |0〉B + eiϕ sin ϑ

2 |1〉B (0 � ϑ � π, 0 � ϕ � 2π) is an arbitrary unknown
pure state of a qubit. Here, i ⊕ m denotes summation modulus 4, with m = 0, 1, 2, 3. In this
paper, reliability for teleportation will be the criterion for judging the quality of the entangled
thermal state equation (8). Quantitatively, this is measured by the teleportation fidelity,

�
[
�

χAB,P0(m)

B

] ≡
∫

dψB〈ψ |�χAB,P0(m)

B (|ψ〉B〈ψ |)|ψ〉B. (21)

In the standard teleportation protocol P0, the maximal teleportation fidelity �max
[
�

χAB,P0
B

]
achievable is given by [16, 24]

�max
[
�

χAB,P0
B

] = 2F[χAB] + 1

3
, (22)

where the fully entangled fraction

F[χAB] ≡ max
i=0,1,2,3

{
AB

〈
�i

Bell

∣∣χAB

∣∣�i
Bell

〉
AB

}
. (23)

After some straightforward algebra, we obtain

F[χAB] = max

{
1

Z
eβJ ,

1

Z

(
cosh βB +

γ J

B
sinh βB

)
,

1

Z
e−βJ ,

1

Z

(
cosh βB − γ J

B
sinh βB

)}
. (24)

So, F[χAB] is indeed invariant under the substitutions η −→ −η, γ −→ −γ and J −→ −J .
Restricting our considerations to η � 0, 0 � γ � 1 and J > 0, we have

F[χAB] =
{

1
Z

eβJ for
√

η2 + γ 2 � 1,

1
Z

(
cosh βB + γ J

B sinh βB
)

for
√

η2 + γ 2 > 1.
(25)

For a bipartite entangled state ρAB to be useful for quantum teleportation we must have the
fully entangled fraction F[ρAB] > 1

2 [15, 16].
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In the zero-temperature limit, equation (25) reduces to

F[χAB] =




1 for
√

η2 + γ 2 < 1,
1
2 for

√
η2 + γ 2 = 1,

1
2

(
1 + γ√

η2+γ 2

)
> 1

2 for
√

η2 + γ 2 > 1.

(26)

Therefore, the equally weighted mixture equation (16) is useless for quantum teleportation
even though its concurrence equation (17) may not be zero. For a given value of
γ, ηcritical =

√
1 − γ 2 again marks the point of quantum phase transition from the maximally

entangled state equation (15), which yields F[χAB] = 1, to the generally nonmaximally
entangled state equation (18), which still yields F[χAB] > 1

2 as long as η is finite. In the limit
of large η,

F[χAB] ≈ 1
2 + 1

2γ η−1 > 1
2 (27)

equals 1
2 asymptotically when η is infinitely large. This is in contrast to the isotropic case

where the quantum phase transition occurs at ηcritical = 1, from the maximally entangled phase
to the unentangled phase (see equation (14)). Obviously, in this case F[χAB] jumps from 1 to
1
2 at ηcritical = 1. And F[χAB] = 1

2 when η is increased beyond 1 [18].
At nonzero temperatures, due to mixing, F[χAB] decreases to 1

2 at the critical temperature

T
(2)

critical beyond which the performance is worse than what classical communication protocol
can offer, as in the isotropic case [18]. Also, for each γ, T

(2)
critical is dependent on η. To obtain

T
(2)

critical we consider the following. For the thermal state equation (8) to be useful for quantum
teleportation at nonzero T, when

√
η2 + γ 2 < 1, we demand that

sinh βJ > cosh β
√

η2 + γ 2J, (28)

and when
√

η2 + γ 2 > 1, we demand that
γ√

η2 + γ 2
sinh β

√
η2 + γ 2J > cosh βJ. (29)

When γ = 0, equation (28) can be satisfied as long as η < 1, but equation (29) is unattainable.
T

(2)
critical decreases from 1.134 59J to 0 as η is increased from 0 to ηcritical = 1, and remains zero

when η is increased beyond 1 [18]. For nonzero γ, T
(2)

critical similarly decreases to zero when η

is increased from 0 to ηcritical =
√

1 − γ 2, as shown in figure 1. However, this is followed by
a monotonic increase in T

(2)
critical as η is increased beyond

√
1 − γ 2, in contrast to the isotropic

case. The behaviour of T
(2)

critical is therefore qualitatively similar to T
(1)

critical (compare figure 4 in
[10] with our figure 1). In the limit of large η,

T
(2)

critical ≈ ηJ

ln η − ln γ + ln 2
. (30)

Therefore, the anisotropy not only allows one to obtain entangled qubits at higher T and higher
Bm than is possible in the isotropic case, but also the associated entanglement is useful as a
resource for teleportation via P0.

5. Entanglement teleportation

Lee and Kim [19] considered teleportation of an entangled two-body pure spin- 1
2 state via

two independent, equally entangled, noisy quantum channels represented by Werner states
[25]. In their two-qubit teleportation protocol P1, the joint measurement is decomposable into
two independent Bell measurements and the unitary operation into two local one-qubit Pauli
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Figure 1. Temperature T
(2)

critical/J at which the teleportation fidelity is less than 2
3 , plotted as a

function of η (magnetic field strength Bm) for various values of the anisotropy parameter: γ = 0.1
(solid line), γ = 0.5 (broken line) and γ = 1 (dotted line). In each case, the teleportation fidelity
is less than or equal to 2

3 in the region bounded by (and generally above) the relevant curve. Note

that for any finite temperature, there is an η for which the fidelity is strictly greater than 2
3 .

rotations. In other words, P1 is a straightforward generalization of the standard teleportation
protocol P0, just doubling the setup. However, they found that the quantum entanglement
of the two-qubit state is lost during the teleportation even when the channel has nonzero
quantum entanglement, and in order to teleport quantum entanglement the quantum channels
should possess a critical value of minimum entanglement. Hence, teleportating entanglement
demands more stringent conditions on the quantum channels. Mathematically, we generalize
equation (20) to obtain the teleported (output) state

ρout
B1B2

≡ �
χA1B1 ⊗χA2B2 ,P1(m,n)

B1B2

(
ρ in

B1B2

)
=

3∑
i,j=0

(
A1B1

〈
�i

Bell

∣∣χA1B1

∣∣�i
Bell

〉
A1B1

× A2B2

〈
�

j

Bell

∣∣χA2B2

∣∣�j

Bell

〉
A2B2

)
× (

σ i⊕m
B1

⊗ σ
j⊕n

B2

)
ρ in

B1B2

(
σ i⊕m

B1
⊗ σ

j⊕n

B2

)
, (31)

where m, n = 0, 1, 2, 3, and [26]

ρ in
B1B2

= 1

4


σ 0

B1
⊗ σ 0

B2
+ cos µ

(�rB1 · �σB1 ⊗ σ 0
B2

+ �rB2 · σ 0
B1

⊗ �σB2

)
+

3∑
i,j=1

[
ri
B1

r
j

B2

+ sin µ cos ν
(
ki
B1

k
j

B2
− liB1

l
j

B2

) − sin µ sin ν
(
ki
B1

l
j

B2
+ liB1

k
j

B2

)]
σ i

B1
⊗ σ

j

B2


 (32)
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is the input state with µ, ϑB1 , ϑB2 ∈ (0, π); ν, ϕB1 , ϕB2 ∈ (0, 2π), and

�rα = (sin ϑα cos ϕα, sin ϑα sin ϕα, cos ϑα),

�kα = (sin ϕα,− cos ϕα, 0),

�lα = (cos ϑα cos ϕα, cos ϑα sin ϕα,− sin ϑα).

(33)

Here α = B1 or B2. It is easy to verify that ρin
B1B2

·ρin
B1B2

= ρin
B1B2

. That is, ρin
B1B2

is an arbitrary
unknown pure state of two qubits, which are in general entangled.

The entanglement teleportation fidelity can be defined analogously to equation (21):

�
[
�

χA1B1 ⊗χA2B2 ,P1(m,n)

B1B2

] ≡ 3

64π3

∫ π

0

∫ 2π

0

∫ π

0

∫ 2π

0

∫ π

0

∫ 2π

0
dµ dν dϑB1 dϕB1 dϑB2 dϕB2

× cos2 µ sin µ sin ϑB1 sin ϑB2 tr
[
ρ in

B1B2
ρout

B1B2

]
. (34)

After some algebra, we obtain the maximal entanglement teleportation fidelity

�max
[
�

χA1B1 ⊗χA2B2 ,P1

B1B2

] =
{

1
5

(
1 + 4

Z2 e2βJ
)

for
√

η2 + γ 2 � 1

1
5

[
1 + 4

Z2

(
cosh βB + γ J

B sinh βB
)2]

for
√

η2 + γ 2 > 1.

(35)

In terms of �max
[
�

χA1B1 ⊗χA2B2 ,P1

B1B2

]
, for the thermal state equation (8) to be useful for

entanglement teleportation, we demand that �max
[
�

χA1B1 ⊗χA2B2 ,P1

B1B2

]
> 2

5 [16]. This condition
reduces to equations (28) and (29) respectively. Therefore, no new insights could be gained
from the entanglement teleportation fidelity.

It is interesting to analyse the fidelity of the teleported state for some partially unknown
pure input state of two qubits, which are in general entangled. Consider, for instance,

|�in〉B1B2 = cos ξ |00〉B1B2 + sin ξ |11〉B1B2 , (36)

where 0 � ξ � π , with C[|�in〉B1B2〈�in|] = |sin 2ξ |. For
√

η2 + γ 2 � 1, we have the
maximal output fidelity

B1B2〈�in|�χA1B1 ⊗χA2B2 ,P1(2,2)

B1B2
(|�in〉B1B2〈�in|)|�in〉B1B2

= 1

Z2

[
4 cosh2 βJ + 2

(
1 +

γ 2J 2

B2

)
sinh2 βB sin2 2ξ

]
, (37)

while for
√

η2 + γ 2 > 1,

B1B2〈�in|�χA1B1 ⊗χA2B2 ,P1(1,1)

B1B2
(|�in〉B1B2〈�in|)|�in〉B1B2

= 1

Z2

{(
eβJ + cosh βB +

γ J

B
sinh βB

)2

+

[(
eβJ + cosh βB − γ J

B
sinh βB

)2

− 2 sinh 2βJ − 4eβJ cosh βB
]

sin2 2ξ

}
. (38)

We note that, in contrast to the result in [19], the relation between the maximal output
fidelity and the initial entanglement of the input state is not as straightforward. When
η � ηcritical =

√
1 − γ 2, the maximal output fidelity always increases monotonically as

the initial entanglement increases for any β, γ, η and J . However, if η > ηcritical, it could be
a monotonic increasing or decreasing function of the initial entanglement, depending on the
choice of β, γ, η and J .



Quantum teleportation via a two-qubit Heisenberg XY chain 3243

6. Conclusions

In conclusion, we show that in an anisotropic two-qubit Heisenberg XY chain, the nonzero
thermal entanglement produced by adjusting the external magnetic field beyond some critical
strength is a useful resource for teleportation via P0. It would be interesting to determine if the
same occurs in models such as those considered in [11, 12]. We also considered entanglement
teleportation via two two-qubit Heisenberg XY chains. In particular, we show that for the
partially unknown input state equation (36), the optimal output fidelity could be a monotonic
increasing or decreasing function of the entanglement associated with the initial input state.
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